Developing the Animals in Context Ontology

Suzanne Santamaria, DVM, MS
Maureen Fallon, MS
Julie Green, DVM, MS
Stefan Schulz, MD
Jeff Wilcke, DVM, MS
In attempting to arrive at the truth, I ... applied everywhere for information, but in scarcely an instance have I been able to obtain hospital records fit for any purposes of comparison.

Florence Nightingale
Opportunities for animal data analysis increased w/ use of integrated ontologies

Can biomedical researchers interpret agricultural research data?

Can phenotype and genotype be connected accurately?

Can I send animal information to another system?

How many heifers do I see in my clinic? Dairy cattle?

Is this drug approved for this pasture steer?
Problem: Animal nomenclature beyond the Linnaean and Cladistics classification is used.

Cow for milk production

Livestock management software
Methods: Create animal ontology by following OBO Foundry Principles

Reviewed: OBO Foundry principles

Edited: Initial SNOMED subset editing, created text definitions

Discussed: Substitution and integration of external ontology classes

Built: Ontology with Protégé, imported classes with OntoFox

Evaluated: Unofficial evaluation by OBO members
Results: Animals in Context Ontology conforms with most of OBO principles.
Text Definitions

- "Bear which lives in a zoo"
- "26451000009103"

Formal Definitions

- ‘bearer of some taxon quality’
- ‘bearer of some physical volume’
- ‘bearer of some physical mass’
- ‘material object’
- ‘material entity’
- ‘particular’
- ‘entity’
- ‘bearer of some KingdomAnimalisQuality’
- ‘Vertebrata’
- ‘Metazoa’
- ‘flat object part’
- ‘object’
- ‘object aggregate’
- ‘continuant’
- ‘or current’
- ‘material entity’
- ‘or object_boundary’
- ‘or site’
- ‘dependent continuant’
- ‘or independent continuant’
- ‘or spatial region’

Orthogonal

- BFO
- BioTopLite

Single Inheritance
Results: Animals in Context Ontology

<table>
<thead>
<tr>
<th>Ontology</th>
<th>Use</th>
<th>Number</th>
<th>Example Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animals in Context (ACO)</td>
<td>Animal classes, animal roles, taxon qualities</td>
<td>216 (unique) 500 (total)</td>
<td>Chicken for meat production</td>
</tr>
<tr>
<td>Basic Formal Ontology (BFO) 1.1</td>
<td>Upper level hierarchy</td>
<td>39</td>
<td>Continuant</td>
</tr>
<tr>
<td>BioTopLite (BTL)</td>
<td>Top domain hierarchy and relations</td>
<td>49</td>
<td>Organism, Bearer of</td>
</tr>
<tr>
<td>NCBI Taxonomy</td>
<td>Taxonomy (Linnaean)</td>
<td>40</td>
<td>Gallus gallus</td>
</tr>
<tr>
<td>Environment Ontology (EnvO)</td>
<td>Environment sites</td>
<td>15</td>
<td>Farm</td>
</tr>
<tr>
<td>Gene Ontology (GO)</td>
<td>Biological processes</td>
<td>8</td>
<td>Lactation</td>
</tr>
<tr>
<td>Phenotypic Quality Ontology (PATO)</td>
<td>Phenotypic qualities and functions</td>
<td>18</td>
<td>Female</td>
</tr>
</tbody>
</table>
Integrating animal class w/ scientific ontologies

| ACO Animal Class: Female cattle prior to birth of first calf
|
|
|
| Heifer
|
| Text def.: Female cattle from birth through the birth of her first calf
<p>|

|

|</p>
<table>
<thead>
<tr>
<th></th>
<th>Relation</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bearer of</td>
<td>Female PATO:0000383</td>
</tr>
<tr>
<td></td>
<td>Bearer of</td>
<td>Immature PATO:0001501</td>
</tr>
<tr>
<td></td>
<td>Bearer of</td>
<td>Nulliparous PATO:0002368*</td>
</tr>
<tr>
<td></td>
<td>Is a</td>
<td>Bovinae NCBITaxon:27592</td>
</tr>
<tr>
<td></td>
<td>Bearer of</td>
<td>Subfamily Bovinae quality</td>
</tr>
</tbody>
</table>
Discussion: successes and challenges

Successes
- Compliance and collaboration
- Improvements

Challenges:
- Text definitions
- Measuring compliance
- Current content of OBO ontologies
- Funding of ontologies
Discussion: **future directions identified**

- **Addition and refinement of classes**
 - Animal production classes (e.g. broiler chicken)
 - Grouping classes (e.g., shellfish, nonhuman primate, antelope)

- **Formal evaluation by OBO Foundry**

- **Deliver to communities**
ACO:

• Created following solid OBO Foundry guidelines and using tools
• Challenges should facilitate future animal ontologies
• Interoperable with OBO ontologies, allowing for data analysis and knowledge discovery
Acknowledgements

US Department of Agriculture
and
US Food and Drug Administration Center for Veterinary Medicine
Funding support

OBO Foundry Members:
Dr. Yu Lin
Dr. Chris Mungall
Dr. Alan Ruttenberg
Dr. Barry Smith
Assistance with developing ontology

ICBO Planning Committee
Association for Veterinary Informatics (AVI)
Virginia-Maryland Regional College of Veterinary Medicine
Biomedical and Veterinary Sciences (BMVS) Program
Travel support