Role-based representation and inference of biochemical processes

Christian Bölling¹, Michel Dumontier², Michael Weidlich³ and Hermann-Georg Holzhütter¹

¹Charité Universitätsmedizin Berlin, Germany

²Carleton University, Ottawa, Canada

³Humboldt-Universität Berlin, Germany

motivation

- ➤ computational approaches to study biochemistry require machine accessible representations of biochemical knowledge
- > existing representations adopt formal semantics to varying degrees
- > limited expressivity and ability for reasoning

- biochemical processes viewed as microscopic molecular events
- individuals of classes describing chemical species represent *single molecules*
- individuals of classes describing biochemical processes represent single molecular events, i.e. directed transitions of a chemical system from an initial to a terminal state involving individual molecules

Roles

main axis of classification: stoichiometry

```
aA + bB \rightarrow xX + yY
                         EquivalentTo:
                         (realizes exactly a (reactant role and (has_bearer some A))) and
                         (realizes exactly b (reactant role and (has bearer some B))) and
                         (realizes exactly x (product role and (has bearer some X))) and
                         (realizes exactly y (product role and (has bearer some Y))) and
                         realizes exactly (a+b) reactant role and
                         realizes exactly (x+y) product role
glc + atp \rightarrow g6p + adp
                         EquivalentTo:
                         (realizes exactly 1 (reactant role and (has bearer some glc))) and
                         (realizes exactly 1 (reactant role and (has bearer some atp))) and
                         (realizes exactly 1 (product role and (has bearer some g6p))) and
                         (realizes exactly 1 (product role and (has bearer some adp))) and
                         realizes exactly 2 reactant role and
                         realizes exactly 2 product role
```

classification by overall stoichiometry

EquivalentTo:

(realizes exactly 1 (reactant_role and (has_bearer some glc))) and (realizes exactly 1 (reactant_role and (has_bearer some atp))) and (realizes exactly 1 (product_role and (has_bearer some g6p))) and (realizes exactly 1 (product_role and (has_bearer some adp))) and realizes exactly 2 reactant_role and realizes exactly 2 product_role

... and catalysis

EquivalentTo:

(realizes exactly 1 (reactant_role and (has_bearer some glc))) and (realizes exactly 1 (reactant_role and (has_bearer some atp))) and (realizes exactly 1 (product_role and (has_bearer some g6p))) and (realizes exactly 1 (product_role and (has_bearer some adp))) and (has_bearer some adp))) and realizes exactly 2 reactant_role and realizes exactly 2 product_role and (realizes exactly 1 (enzyme_role and (has_bearer some hk)))

... and mechanism

EquivalentTo:

(realizes exactly 1 (reactant_role and (has_bearer some glc))) and (realizes exactly 1 (reactant_role and (has_bearer some atp))) and (realizes exactly 1 (product_role and (has_bearer some g6p))) and (realizes exactly 1 (product_role and (has_bearer some adp))) and realizes exactly 2 reactant_role and realizes exactly 2 product_role and (realizes exactly 2 product_role and (realizes exactly 1 (enzyme_role and (has_bearer some hk))) and (has_proper_part ...)

partonomy of processes

process types

shared reactants & products: sequence of processes

location of processes and transport

```
glc + atp → g6p + adp in the cytosol of human liver cells

EquivalentTo:

(realizes exactly 1 (reactant_role and (has_bearer some glc))) and

(realizes exactly 1 (reactant_role and (has_bearer some atp))) and

(realizes exactly 1 (product_role and (has_bearer some g6p))) and

(realizes exactly 1 (product_role and (has_bearer some adp))) and

(realizes exactly 2 reactant_role) and

(realizes exactly 2 product_role) and

(occurs_in some (cytosol and (part_of some (cell and (part_of some (liver and (part_of some Homo sapiens))))))
```

location of processes and transport

realizes exactly 2 product_role

inference of process and entity characteristics

inference of process and entity characteristics

- location of reaction participants:
 biochemical_process(?p), occurs_in(?p,?l),
 has_participant(?p,?o) -> located_in(?o,?l)
- sequence of processes within same location:
 product_role(?r1), reactant_role(?r2), has_bearer(?
 r1,?o), has_bearer(?r2,?o), realizes(?p1,?r1),
 realizes(?p2,?r2), occurs_in(?p1,?l), occurs_in(?p2,?l)
 -> directly_precedes(?p1,?p2)

outlook

- integrate with ontological descriptions of chemical entities, cell-types, tissues
- implement design patterns / rules for classification according to taxonomies of chemicals, locations, reaction mechanisms,...
- add support for quantitative description of reactions / participants
- expand on other molecular interactions
- use for biochemical network reconstruction, integration of pathway datasets, inference of molecular associations...

Acknowledgments

Michael Weidlich

UNIVERSITÄTSMEDIZIN BERLIN

Hermann-Georg Holzhütter

Federal Ministry of Education and Research

